Cover Image
close this bookProtein-Energy Requirements of Developing Countries: Evaluation of New Data (UNU, 1981, 268 p.)
View the documentAcknowledgements
View the documentForeword
close this folderIntroduction
View the documentStatistical considerations in the estimation of protein requirements
View the documentA summary analysis of the nitrogen-balance data
close this folderDiscussions and recommendations of the task forces
View the documentProtein requirements for adults
View the documentEnergy requirements for adults and energy-protein relationships
View the documentProtein requirements for children
View the documentEnergy requirements for children and energy-protein relationships
close this folderA note on energy utilization and its efficiency
View the document(introduction...)
View the documentReferences
close this folderResearch papers: Protein requirements-adults, standard protocols
close this folderCapacity of the Chilean mixed diet to meet the protein and energy requirements of young adult males
View the document(introduction...)
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions
View the documentAcknowledgements
close this folderProtein requirements for young Colombian adults consuming local diets containing primarily animal or vegetable protein
View the document(introduction...)
View the documentObjectives
View the documentSummary of the main results
View the documentConclusions
close this folderProtein requirements of young Chinese male adults for ordinary Chinese
View the document(introduction...)
View the documentObjectives
View the documentExperimental details
View the documentSummary of main results
close this folderProtein requirements of young male adults with a rural Mexican diet
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of the main results
View the documentConclusions
close this folderThe evaluation of soy protein isolate alone and in combination with fish in adult Japanese men
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions
close this folderProtein requirements of adult Thai males
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
View the documentAcknowledgements
close this folderEvaluation of the nutritive value of a rice-and-bean-based diet for agricultural migrant workers in Brazil
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions and comments
close this folderProtein requirements-adults, other protocols
close this folderProtein quality of rice-and-bean diets with or without protein and energy supplements to estimate protein requirements in young adult humans
View the document(introduction...)
View the documentObjectives
View the documentExperimental details
View the documentConclusions and comments
close this folderProtein needs of young adult men fed common beans (phaseolus vulgaris) in combination with starch, plantain, maize, or rice
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions and comments
close this folderObligatory nitrogen losses-adults
close this folderObligatory urinary and faecal nitrogen losses in young Chilean men fed two levels of dietary energy intake
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions and comments
close this folderObligatory nitrogen losses of adult Thai males
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main result
View the documentConclusions and comments
close this folderNitrogen absorption-adults
close this folderProtein absorption of adult men with intestinal helminthic parasites
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of the main results
View the documentConclusions and comments
close this folderAbsorptive capacity of adult Guatemalan rural males living under different conditions of sanitation
View the document(introduction...)
View the documentObjectives
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions
close this folderStudies of energy intakes, expenditures, and requirements in China
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
close this folderObligatory and integumental nitrogen losses - children
close this folderObligatory nitrogen losses and factorial calculations of protein requirements of pre-school children
View the document(introduction...)
View the documentObjectives
View the documentExperimental details
View the documentSummary of the main results
View the documentConclusions
close this folderIntegumental nitrogen losses of pre-school children with different levels and sources of dietary protein intake
View the document(introduction...)
View the documentObjectives
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions
View the documentThe protein requirements of normal infants at the age of about one year: maintenance nitrogen requirements and obligatory nitrogen losses
close this folderProtein requirements-children
close this folderProtein requirements of Filipino children 20 to 29 months old consuming local diets
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions and comments
close this folderProtein requirements of pre-school children: milk and soybean protein isolate
View the document(introduction...)
View the documentObjectives
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions
close this folderProtein absorption of pre-school children with intestinal helminth parasites
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions and comments
close this folderUse of corn-bean mixtures to satisfy protein and energy requirements of preschool children
View the document(introduction...)
View the documentObjectives
View the documentExperimental details
View the documentSummary of the main results
close this folderProtein-energy requirements-children
close this folderCapacity of habitual Guatemalan diets to satisfy protein requirements of pre-school children with adequate dietary energy intakes
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
View the documentComments
View the documentConclusions
close this folderEnergy requirements of pre-school children and effects of varying energy intakes on protein metabolism
View the document(introduction...)
View the documentObjectives
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions and comments
close this folderRecommended dietary energy intakes for the first six months of life
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions and comments
close this folderProtein-energy requirements-adults
close this folderInterrelationships between effects of protein and energy intakes on nitrogen utilization in adult men
View the document(introduction...)
View the documentEffect of nitrogen intake on nitrogen utilization (1, 2)
View the documentConcluding comment
View the documentReferences
close this folderRecommended dietary amounts of energy for pregnancy and lactation in the United Kingdom
View the document(introduction...)
View the documentObjective
View the documentExperimental details
View the documentSummary of main results
View the documentConclusions and comments
View the documentList of participants

Experimental details

1. Subjects Number: ten per experimental run.
Experimental runs: four.
Age: 20 to 31 years.
Sex: male.
Racial origin: Maya Indian and Spanish.

TABLE 1. Ascending Protein Intake Sequence

Protein intake Calorie intake  
level (g/kg/day) level (g/kg/day) No. of days Diet fed
0.6 45 & 50 6 Regular diet
0.0 45 & 50 3 Nitrogen-free diet
0.2 45 & 50 2 Rice and bean*
0.4 45 & 50 2 Rice and bean
0.6 45 & 50 2 Rice and bean

*Rice and bean (60:40 protein distribution) in study I with 45 kcal/kg/day; in study 2 with 50 kcal/kg/days; in study 3 with 10 per cent milk protein substitution with 45 kcal/kg/day and in study 4 with 10 per cent milk protein substitution with 50 kcal/kg/day.

Physiological status: normal.

Nutritional status: acceptable-weight 49.1 to 65.0 kg; height 157 to 172 cm.

Health status: free of chronic infections and free of intestinal parasites.

2. Study Environment Location:
Metabolic Unit of the Division of Food Science, INCAP. Climatic characteristics: temperature 21 to 25 C (day); relative humidity 77 to 85 per cent; altitude 1,470 m above sea level; months of September to December 1979.

3. Physical Activity Normal
(laboratory technicians and institution maintenance crew).

4. Duration of Study
Total time per Study nine days.

Procedure: short-term, multiple-point nitrogen-balance assay.

Protein intake changes: every two days, as indicated in table 1.

TABLE 2. Nitrogen-Free Diet Composition per Assay

Food 1 2 3 4 Calories from each ingredient (kcal)
Instant coffee, g 3 3 3 3 3
White sugar, g 25 25 25 25 100
Apple or pineapple marmalade, g 30 30 30 30 78
Wheat starch bread,1 g 300 300 300 300 801
Margarine, g 80 80 80 80 576
Cornstarch soup≤ 480 480 480 480 144
Vegetable (Guisquil), g 100 100 100 100 52
Apple (with peel), g 200 200 200 200 116
Artifical fruit-flavoured drink (glasses) 3 3 3 3 228
Cookies (units)≥ 2 1 1 1 100/unit
Carbonated drinks (units) 1 - 1 - 136
Vitamin/mineral supplement (pills) 4 1 1 1 1 -
Total calories 2,434 2,198 2,334 2,198  

1,3 Prepared from wheat starch (Jolly Joan, Ener-G Foods, Inc., P.O. Box 24723, Seattle, Washington 98124, USA).
2 Prepared from cornstarch and margarine, and seasoned with aromatic herbs. Herbs were not consumed
4 UNIT TMR.

5. Diets Table 2 describes the ingredient composition of the basal diet fed (nitrogen-free diet), and table 3 shows the protein content of the rice and beans used in the four studies. Table 3 also describes the vitamin and mineral composition.

The protein and energy intake from rice and beans was calculated every two days. It was given to the subjects in three equal portions, or during lunch or dinner. Large batches of raw rice and beans were purchased to reduce the variability that could be caused by differences in quality. The beans were cooked in large lots by soaking for 14 to 16 hours followed by cooking at 151bs/inch2 (1.05 kg/cm2) for 30 minutes. The material was then stored frozen. Rice was steamed.

TABLE 3. Protein Content of Protein Sources

Food Moisture Dry matter Protein (N x 6.25)
  (%) (%) (%)*
Rice 68.5 31.5 2.68
Beans 76.1 23.9 7.38
Basal diet (nitrogen-free diet) 76.4 23.6 0.35

*Fresh basis.

6. Measurements and indicators
Composition of diets: AOAC methods of proximate chemical analysis.

Digestibility: apparent and true.

Nitrogen balance: apparent-does not include other losses.

Indicators of protein quality and utilization: (a) linear regression analysis (y = a + bx) of nitrogen intake (Nl) to nitrogen retention (NR) and of nitrogen absorption (NA) to NR; N i for N R = 0; (b) quadratic regression analysis (y = a + bx + cx2) of Nl to NR and of NA to NR, used primarily to estimate recommended protein intake as obtained by calculating the first derivative dy/dx = b + cx, where x (Nl or NA) is equal to-(b/2c).

Energy: digestibility and metabolizable energy at 0.6 9 protein intake and by measuring energy in food, faeces, and urine.

Other determinations and measurements: none.

Summary of Main Results Protein digestibility (apparent) of the rice and bean diet (60:40) was not affected by a difference in energy intake of 45 to 50 kcal (59.1 vs. 59.6 per cent). It was increased by the 10 per cent milk replacement of the protein in the rice and bean mixture without being affected by energy intake (65.3 and 64.6 per cent). The protein digestibility of milk was 75.6 per cent. Energy digestibility of the diets varied from 93.3 to 94.6 per cent, while metabolizable energy varied from 91.9 to 92.9 per cent.

The linear coefficient of regression between Nl and NR was not affected by energy intake without milk (0.75 and 0.79) or with milk (0.95 and 0.86), but milk supplementation improved it significantly, and was no different from milk alone (0.91). The Nl for NR = 0 followed the same trend. For 45 and 50 kcal/kg/day the values without milk were 95.6 and 92.9 mg/kg/day, and with milk, 78.4 and 80.8 mg/kg/day. The milk reference value used was 86.6 mg/kg/day. The relative coefficients of regression to milk equal to 100 per cent were 82.4, 86.8, 104.4, and 94.5 per cent.

The effect of milk was attributed to an improvement in protein digestibility rather than to an improvement in essential amino acid balances, as judged by amino acid content and by the linear regression coefficients of NA to NR, which were statistically alike (0.99, 1.02, 1.10, and 1.04 for diets, and 0.91 for milk). Using the quadratic regression equations, the protein intakes for maximum nitrogen retention were 0.79, 0.79, 0.69, and 0.74, with diets of better quality giving lower values. Correcting for differences in digestibility, ail values were similar, with an average of 74.8 mg N/kg/ day. This value was interpreted to represent the amount needed for all of the population to be in positive and maximal balance.