| **A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns** - *Setsuo Arikawa, Satoru Kuhara, Satoru Miyano, Yasuhito Mukouchi, Ayumi Shinohara and Takeshi Shinohara* - 1992 |

| **Machine Discovery in the Presence of Incomplete or Ambiguous Data** - *S. Lange and P. Watson* - 1994 |

| **Machine Discovery of Effective Admissible Heuristics** - *Armand E. Prieditis* - 1993 |

| **Machine discovery of protein motifs** - *Darrell Conklin* - 1995 |

| **Machine Induction Without Revolutionary Changes in Hypothesis Size** - *John Case, Sanjay Jain and Arun Sharma* - August 1996 |

| **Machine Induction Without Revolutionary Paradigm Shifts** - *John Case, Sanjay Jain and Arun Sharma* - 1995 |

| **Machine Inductive Inference and Language Identification** - *J. Case and C. Lynes* - 1982 |

| **Machine Learning** - *R. L. Rivest and W. Remmele* - 1991 |

| **Machine Learning** - *Thomas G. Dietterich* - 1999 |

| **Machine Learning** - *Tom M. Mitchell* - 1997 |

| **A Machine Learning Algorithm for Analyzing String Patterns Helps to Discover Simple and Interpretable Business Rules from Purchase History** - *Yukinobu Hamuro, Hideki Kawata, Naoki Katoh and Katsutoshi Yada* - 2001 |

| **Machine Learning: A Maturing Field** - *Jaime Carbonell* - 1992 |

| **Machine Learning: A Multistrategy Approach** - *Ryszard Michalski and George Tecuci* - 1993 |

| **Machine Learning: An Artificial Intelligence Approach** - *Ryszard S. Michalski and Jaime G. Carbonell and Tom M. Mitchell* - 1983 |

| **Machine Learning: An Artificial Intelligence Approach** - *Ryszard S. Michalski and Jaime G. Carbonell and Tom M. Mitchell* - 1986 |

| **Machine Learning: An Artificial Intelligence Approach** - *Yves Kodratoff and Ryszard Michalski* - 1990 |

| **Machine Learning and Concept Formation** - *P. Langley* - 1987 |

| **Machine Learning and Data Mining in Pattern Recognition, Second International Workshop, MLDM 2001, Leipzig, Germany, July 2001, Proceedings** - *Petra Perner* - 2001 |

| **Machine Learning and Discovery** - *Pat Langley and Ryszard S. Michalski* - 1986 |

| **Machine Learning and Grammar Induction** - *P. Langley* - 1987 |

| **Machine learning and qualitative reasoning** - *Ivan Bratko* - 1994 |

| **Machine-learning applications of algorithmic randomness** - *Volodya Vovk, Alex Gammerman and Craig Saunders* - 1999 |

| **A Machine Learning Approach to POS Tagging** - *L. Màrquez, L. Padró and H. Rodriguez* - 2000 |

| **A Machine Learning Approach to Workflow Management** - *Joachim Herbst* - 2000 |

| **Machine Learning as an Experimental Science** - *P. Langley* - 1988 |

| **Machine Learning: A Theoretical Approach** - *B. K. Natarajan* - 1991 |

| **Machine learning by function decomposition** - *Blaž Zupan, Marko Bohanec, Ivan Bratko and Janez Demšar* - 1997 |

| **Machine Learning: ECML 2000, 11th European Conference on Machine Learning, Barcelona, Catalonia, Spain, May 31 - June 2, 2000, Proceedings** - *Ramon López de Mántaras and Enric Plaza* - 2000 |

| **Machine Learning: ECML 2001, 12th European Conference on Machine Learning, Freiburg, Germany, September 5-7, 2001, Proceedings** - *Luc De Raedt and Peter Flach* - 2001 |

| **Machine Learning for Information Extraction in Informal Domains** - *Dayne Freitag* - 2000 |

| **Machine Learning for Subproblem Selection** - *Robert Moll, Theodore J. Perkins and Andrew G. Barto* - 2000 |

| **Machine learning for the detection of oil spills in satellite radar images** - *Miroslav Kubat, Robert C. Holte and Stan Matwin* - 1998 |

| **Machine Learning: From Theory to Applications; Cooperative Research at Siemens and MIT** - *S. J. Hanson and W. Remmele and Ronald L. Rivest* - 1993 |

| **Machine Learning of Event Segmentation for News on Demand** - *Stanley Boykin and Andrew Merlino* - 2000 |

| **Machine Learning of Higher Order Programs** - *G. Baliga, J. Case, S. Jain and M. Suraj* - 1994 |

| **Machine Learning of Inductive Bias** - *P. E. Utgoff* - 1986 |

| **Machine Learning of Nearly Minimal Size Grammars** - *J. Case and H. Chi* - 1986 |

| **Machine Learning: Paradigms and Methods** - *Jaime Carbonell* - 1990 |

| **Machine Learning Research at MIT** - *R. L. Rivest and P. Winston* - 1990 |

| **Machine Learning: the Human Connection** - *R. L. Rivest and W. Remmele* - March / April 1988 |

| **A Machine That Learns** - *W. G. Walter* - August 1951 |

| **MadaBoost: A Modification of AdaBoost** - *Carlos Domingo and Osamu Watanabe* - 2000 |

| **Made-up Minds: A Constructivist Approach to Artificial Intelligence** - *G. L. Drescher* - September 1989 |

| **Making better use of global discretization** - *Eibe Frank and Ian H. Witten* - 1999 |

| **Malicious omissions and errors in answers to membership queries** - *Dana Angluin, Mārtiņš Krikis, Robert H. Sloan and György Turán* - 1997 |

| **Managing complexity in neuroidal circuits** - *Leslie G. Valiant* - 1996 |

| **Margin Distribution Bounds on Generalization** - *John Shawe-Taylor and Nello Christianini* - 1999 |

| **Markov decision processes in large state spaces** - *Lawrence K. Saul and Satinder P. Singh* - 1995 |

| **Markov games as a framework for multi-agent reinforcement learning** - *Michael L. Littman* - 1994 |

| **A Markovian extension of Valiant's learning model** - *D. Aldous and U. Vazirani* - 1990 |

| **A Markovian Extension of Valiant's Learning Model** - *D. Aldous and U. Vazirani* - 1995 |

| **Markov Processes on Curves** - *Lawrence K. Saul and Mazin G. Rahim* - 2000 |

| **Maryanski's Grammatical Inferencer** - *B. R. Gaines* - January 1979 |

| **The Mathematical Foundations of Learning Machines** - *N. J. Nilsson* - 1990 |

| **Mathematical learning theory: a formalized, axiomatic, abstract approach** - *R. J. Hendel* - 1979 |

| **Mathematical/Mechanical? Learners pay a price for Bayesianism** - *D. N. Osherson, M. Stob and S. Weinstein* - 1988 |

| **A mathematical theory of learning transformational grammar** - *Henry Hamburger and Kenneth N. Wexler* - 1975 |

| **Mathematical Theory of Neural Learning** - *S. Amari* - 1991 |

| **Mathematics Based on Learning** - *Susumu Hayashi* - 2002 |

| **Matters Horn and Other Features in the Computational Learning Theory Landscape: The Notion of Membership** - *M. Frazier* - 1994 |

| **Maximal machine learnable classes** - *J. Case and M. A. Fulk* - 1999 |

| **Maximizing Agreements and CoAgnostic Learning** - *Nader H. Bshouty and Lynn Burroughs* - 2002 |

| **Maximizing the Margin with Boosting** - *Gunnar Rätsch and Manfred K. Warmuth* - 2002 |

| **Maximizing Theory Accuracy Through Selective Reinterpretation** - *Shlomo Argamon-Engelson, Moshe Koppel and Hillel Walters* - 2000 |

| **Maximum Entropy Markov Models for Information Extraction and Segmentation** - *Andrew McCallum, Dayne Freitag and Fernando Pereira* - 2000 |

| **The Maximum Latency and Identification of Positive Boolean Functions** - *Kazuhisa Makino and Toshihide Ibaraki* - 1997 |

| **Maximum Likelihood Estimation of Mixture Densities for Binned and Truncated Multivariate Data** - *Igor V. Cadez, Padhraic Smyth, Geoff J. McLachlan and Christine E. McLaren* - 2002 |

| **Maximum-likelihood from Incomplete Data via the EM Algorithm** - *A. P. Dempster, N. M. Laird and D. B Rubin* - 1977 |

| **Maximum mutual information and conditional maximum likelihood estimation of stochastic regular syntax-directed translation schemes** - *F. Casacuberta* - 1996 |

| **The MAXQ method for hierarchical reinforcement learning** - *Thomas G. Dietterich* - 1998 |

| **MDL and categorical theories (continued)** - *J. R. Quinlan* - 1995 |

| **MDL learning of unions of simple pattern languages from positive examples** - *Pekka Kilpeläinen, Heikki Mannila and Esko Ukkonen* - 1995 |

| **A Mean Field Theory Learning Algorithm for Neural Networks** - *C. Peterson and J. R. Anderson* - 1987 |

| **Meaning helps learning syntax** - *Isabelle Tellier* - 1998 |

| **Measurability Constraints on PAC Learnability** - *S. Ben-David and G. M. Benedek* - 1991 |

| **A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations** - *H. Chernoff* - 1952 |

| **Measuring Performance when Positives Are Rare: Relative Advantage versus Predictive Accuracy - A Biological Case Study** - *Stephen Muggleton, Christopher H. Bryant and Ashwin Srinivasan* - 2000 |

| **A mechanical method of successful scientific inquiry** - *D. N. Osherson, M. Stob and S. Weinstein* - 1990 |

| **A Mechanism for Early Piagetian Learning** - *G. L. Drescher* - July 1987 |

| **Meme Media for Re-editing and Redistributing Intellectual Assets and Their Application to Interactive Virtual Information Materialization** - *Yuzuru Tanaka* - 2001 |

| **Memory Limited Inductive Inference Machines** - *Rusins Freivalds and Carl Smith* - 1992 |

| **Merging Uniform Inductive Learners** - *Sandra Zilles* - 2002 |

| **Meta-Learning by Landmarking Various Learning Algorithms** - *Bernhard Pfahringer, Hilan Bensusan and Christophe Giraud-Carrier* - 2000 |

| **Meta-Learning for Phonemic Annotation of Corpora** - *Véronique Hoste, Walter Daelemans, Erik Tjong Kim Sang and Steven Gillis* - 2000 |

| **A method for constructive learning of recurrent neural networks** - *Dong Chen, C. Lee Giles, Gordon Sun, Mark W. Goudreau, Hsing-Hen Chen and Yee-Chun Lee* - 1995 |

| **A Method for Inferring Context-Free Grammars** - *B. Knobe and K. Knobe* - 1976 |

| **A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space** - *J. Gordon and E. H. Shortliffe* - July 1985 |

| **A method for obtaining digital signatures and public key cryptosytems** - *R. L. Rivest, A. Shamir and L. Adleman* - 1978 |

| **A Method of Computing Generalized Bayesian Probability Values for Expert Systems** - *P. C. Cheeseman* - August 1983 |

| **A Method of Similarity-Driven Knowledge Revision for Type Specification** - *Nobuhiro Morita, Makoto Haraguchi and Yoshiaki Okubo* - 1999 |

| **A methodology for LISP program construction from examples** - *P. D. Summers* - January 1977 |

| **Metric-Based Inductive Learning Using Semantic Height Functions** - *Zdravko Markov and Ivo Marinchev* - 2000 |

| **Metric-Based Methods for Adaptive Model Selection and Regularization** - *Dale Schuurmans and Finnegan Southey* - 2002 |

| **A metric entropy bound is not sufficient for learnability** - *R. Dudley, S. Kulkarni, T. Richardson and O. Zeituni* - October 1992 |

| **Microchoice bounds and self bounding learning algorithms** - *John Langford and Avrim Blum* - 1999 |

| **A Microscopic Study of Minimum Entropy Search in Learning Decomposable Markov Networks** - *Y. Xiang, S. K. M. Wong and N. Cercone* - 1997 |

| **Miminum description length estimators under the optimal coding scheme** - *V. G. Vovk* - 1995 |

| **Mind change complexity of learning logic programs** - *Sanjay Jain and Arun Sharma* - 2002 |

| **Mind Change Complexity of Learning Logic Programs** - *Sanjay Jain and Arun Sharma* - 1999 |

| **Minimal Concept Identification and Reliability** - *Sanjay Jain* - 1998 |

| **Minimal Gödel numbers and their identification in the limit** - *R. V. Freivalds* - 1975 |

| **Minimal Samples of Positive Examples Identifying k-CNF Boolean Functions** - *A. T. Ogielski* - 1994 |

| **A minimax lower bound for empirical quantizer design** - *Peter Bartlett, Tamás Linder and Gábor Lugosi* - 1997 |

| **Minimax regret under log loss for general classes of experts** - *Nicolò Cesa-Bianchi and Gábor Lugosi* - 1999 |

| **Minimax relative loss analysis for sequential prediction algorithms using parametric hypotheses** - *Kenji Yamanishi* - 1998 |

| **The Minimax Strategy for Gaussian Density Estimation** - *Eiji Takimoto and Manfred Warmuth* - 2000 |

| **Minimax TD-Learning with Neural Nets in a Markov Game** - *Fredrik A. Dahl and Ole Martin Halck* - 2000 |

| **Minimised Residue Hypotheses in Relevant Logic** - *Bertram Fronhöfer and Akihiro Yamamoto* - 2002 |

| **Minimizing alpha-Information for Generalization and Interpretation** - *R. Kamimura* - 1998 |

| **Minimizing the Quadratic Training Error of a Sigmoid Neuron Is Hard** - *Jir\'ı ť\'ıma* - 2001 |

| **The minimum consistent DFA problem cannot be approximated within any polynomial** - *Leonard Pitt and Manfred K. Warmuth* - 1993 |

| **Minimum description length induction, Bayesianism, and Kolmogorov complexity** - *P. M. Vitányi and M. Li* - 2000 |

| **Minimum Description Length Principle** - *J. Rissanen* - 1985 |

| **The minimum description length principle and categorical theories** - *J. R. Quinlan* - 1994 |

| **Minimum Generalization Via Reflection: A Fast Linear Threshold Learner** - *Steven Hampson and Dennis Kibler* - 1999 |

| **Minimum Information Estimation of Structure** - *G. W. Hart* - April 1987 |

| **The minimum L-complexity algorithm and its applications to learning non-parametric rules** - *K. Yamanishi* - 1994 |

| **Minimum Message Length Grouping of Ordered Data** - *Leigh J. Fitzgibbon, Lloyd Allison and David L. Dowe* - 2000 |

| **A minimum risk metric for nearest neighbor classification** - *Enrico Blanzieri and Francesco Ricci* - 1999 |

| **Mining from Literary Texts: Pattern Discovery and Similarity Computation** - *Masayuki Takeda, Tomoko Fukuda and Ichiro Nanri* - 2001 |

| **Mining of Topographic Feature from Heterogeneous Imagery and Its Application to Lunar Craters** - *Rie Honda, Yuichi Iijima and Osamu Konishi* - 2001 |

| **Mining TCP/IP Traffic for Network Intrusion Detection by Using a Distributed Genetic Algorithm** - *Filippo Neri* - 2000 |

| **Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL** - *Peter D. Turney* - 2001 |

| **Mirror Image Learning for Handwritten Numeral Recognition** - *Meng Shi, Tetsushi Wakabayashi, Wataru Ohyama and Fumitaka Kimura* - 2001 |

| **Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms** - *N. Littlestone* - 1989 |

| **Mistake bounds of incremental learners when concepts drift with applications to feedforward networks** - *T. Kuh, T. Petsche and R. Rivest* - 1991 |

| **Mixability and the Existence of Weak Complexities** - *Yuri Kalnishkan and Michael V. Vyugin* - 2002 |

| **Mixed Memory Markov Models: Decomposing Complex Stochastic Processes as Mixtures of Simpler Ones** - *Lawrence K. Saul and Michael I. Jordan* - 1999 |

| **A Mixture Approach to Novelty Detection Using Training Data with Outliers** - *Martin Lauer* - 2001 |

| **Mixture densities, maximum likelihood, and the EM algorithm** - *R. A. Redner and H. F. Walker* - 1984 |

| **Mixture models for learning from incomplete data** - *Zoubin Ghahramani and Michael I. Jordan* - 1997 |

| **Mixtures of Factor Analyzers** - *Geoffrey McLachlan* - 2000 |

| **Mixtures of Rectangles: Interpretable Soft Clustering** - *Dan Pelleg and Andrew Moore* - 2001 |

| **MML estimation of the parameters of the spherical Fisher distribution** - *David L. Dowe, Jonathan J. Oliver and Chris S. Wallace* - 1996 |

| **Modeling By Shortest Data Description** - *J. Rissanen* - 1978 |

| **Modeling Cognitive Development on Balance Scale Phenomena** - *Thomas R. Schultz, Denis Mareschal and William C. Schmidt* - 1994 |

| **Modeling Incremental Learning from Positive Data** - *S. Lange and T. Zeugmann* - 1995 |

| **A Model of Inductive Bias Learning** - *J. Baxter* - 2000 |

| **A model of interactive teaching** - *H. David Mathias* - 1997 |

| **A model of sequence extrapolation** - *P. Laird, S. R and P. Dunning* - 1993 |

| **Model Selection and Error Estimation** - *Peter L. Bartlett, Stéphane Boucheron and Gábor Lugosi* - 2000 |

| **Model Selection and Error Estimation** - *Peter L. Bartlett, Stéphane Boucheron and Gáabor Lugosi* - 2002 |

| **Model Selection Criteria for Learning Belief Nets: An Empirical Comparison** - *Tim Van Allen and Russ Greiner* - 2000 |

| **Model Selection for Small Sample Regression** - *Olivier Chapelle, Vladimir Vapnik and Yoshua Bengio* - 2002 |

| **Model selection in unsupervised learning with applications to document clustering** - *Shivakumar Vaithyanathan and Byron Dom* - 1999 |

| **Models of Goal Seeking and Learning** - *M. Gold* - 1965 |

| **Models of Incremental Concept Formation** - *John H. Gennari, Pat Langley and Doug Fisher* - 1989 |

| **Models of Language Acquisition** - *D. Osherson and S. Weinstein* - 1984 |

| **A modular Q-learning architecture for manipulator task decomposition** - *Chen K. Tham and Richard W. Prager* - 1994 |

| **Monotone extensions of Boolean data sets** - *Endre Boros, Toshihide Ibaraki and Kazuhisa Makino* - 1997 |

| **Monotone term decision lists** - *David Guijarro, Victor Lavin and Vijay Raghavan* - 2001 |

| **Monotonic and dual monotonic language learning** - *S. Lange, T. Zeugmann and S. Kapur* - 1996 |

| **Monotonic and dual-monotonic probabilistic language learning of indexed families with high probability** - *Léa Meyer* - 1997 |

| **Monotonic and Non-monotonic Inductive Inference** - *K. P. Jantke* - 1991 |

| **Monotonic and Nonmonotonic Inductive Inference of Functions and Patterns** - *K. P. Jantke* - 1991 |

| **Monotonicity maintenance in information-theoretic machine learning algorithms** - *Arie Ben-David* - 1995 |

| **Monotonicity versus Efficiency for Learning Languages from Texts** - *Efim Kinber* - 1994 |

| **Monotonic language learning** - *Shyam Kapur* - 1993 |

| **Monotonic Versus Non-monotonic Language Learning** - *S. Lange and T. Zeugmann* - 1993 |

| **Monte Carlo hidden Markov models: Learning non-parametric models of partially observable stochastic processes** - *Sebastian Thrun, John C. Langford and Dieter Fox* - 1999 |

| **Monte-Carlo Inference and its Relations to Reliable Frequency Identification** - *Efim Kinber and Thomas Zeugmann* - 1989 |

| **More About Learning Elementary Formal Systems** - *Setsuo Arikawa, Takeshi Shinohara, Satoru Miyano and Ayumi Shinohara* - 1993 |

| **More efficient PAC-learning of DNF with membership queries under the uniform distribution** - *Nader H. Bshouty, Jeffrey C. Jackson and Christino Tamon* - 1999 |

| **More or less efficient agnostic learning of convex polygons** - *Paul Fischer* - 1995 |

| **More theorems about scale-sensitive dimensions and learning** - *Peter L. Bartlett and Philip M. Long* - 1995 |

| **More theory revision with queries (extended abstract)** - *Judy Goldsmith and Robert H. Sloan* - 2000 |

| **The More We Learn the Less We Know? On Inductive Learning from Examples** - *Piotr Ejdys and Grzegorz Gára* - 1999 |

| **Most Sequences Are Stochastic** - *V. V. V'yugin* - September 2001 |

| **Multi-Agent Learning: Theoretical and Empirical Studies** - *Robert Daley* - 1993 |

| **A Multi-Agent, Policy-Gradient Approach to Network Routing** - *Nigel Tao, Jonathan Baxter and Lex Weaver* - 2001 |

| **Multi-Agent Q-learning and Regression Trees for Automated Pricing Decisions** - *Manu Sridharan and Gerald Tesauro* - 2000 |

| **Multi-Agent Reinforcement Learning for Traffic Light Control** - *Marco Wiering* - 2000 |

| **Multiagent reinforcement learning: theoretical framework and an algorithm** - *Junling Hu and Michael P. Wellman* - 1998 |

| **MultiBoosting: A Technique for Combining Boosting and Wagging** - *Geoffrey I. Webb* - 2000 |

| **Multiclass learning, boosting, and error-correcting codes** - *Venkatesan Guruswami and Amit Sahai* - 1999 |

| **Multi-criteria reinforcement learning** - *Zoltán Gábor, Zsolt Kalmár and Csaba Szepesvári* - 1998 |

| **Multilevel counterfactuals for generalizations of relational concepts and productions** - *S. A. Vere* - 1980 |

| **Multi Level Knowledge in Modeling Qualitative Physics Learning** - *Filippo Neri* - 2000 |

| **Multiple Comparisons in Induction Algorithms** - *David D. Jensen and Paul R. Cohen* - 2000 |

| **Multiple-instance learning for natural scene classification** - *Oded Maron and Aparna Lakshmi Ratan* - 1998 |

| **Multiple-Instance Learning of Real-Valued Data** - *Robert A. Amar, Daniel R. Dooly, Sally A. Goldman and Qi Zhang* - 2001 |

| **Multiple Instance Regression** - *Soumya Ray and David Page* - 2001 |

| **A Multiple Model Cost-Sensitive Approach for Intrusion Detection** - *Wei Fan, Wenke Lee, Salvatore J. Stolfo and Matthew Miller* - 2000 |

| **MultiStage Cascading of Multiple Classifiers: One Man's Noise is Another Man's Data** - *Cenk Kaynak and Ethem Alpaydin* - 2000 |

| **A Multistrategy Approach to Classifier Learning from Time Series** - *William H. Hsu, Sylvian R. Ray and David C. Wilkins* - 2000 |

| **Multistrategy Discovery and Detection of Novice Programmer Errors** - *Raymund C. Sison, Masayuki Numao and Masamichi Shimura* - 2000 |

| **Multistrategy Learning and Theory Revision** - *Lorenza Saitta, Marco Botta and Filippo Neri* - 1993 |

| **Multistrategy learning for information extraction** - *Dayne Freitag* - 1998 |

| **Multistrategy Theory Revision: Induction and Abduction in INTHELEX** - *Floriana Esposito, Giovanni Semeraro, Nicola Fanizzi and Stefano Ferilli* - 2000 |

| **Multitask learning** - *Rich Caruana* - 1997 |

| **Multivariate decision trees** - *Carla E. Brodley and Paul E. Utgoff* - 1995 |

| **The Musical Expression Project: A Challenge for Machine Learning and Knowledge Discovery** - *Gerhard Widmer* - 2001 |

| **Mutual Information and Bayes Methods for Learning a Distribution** - *David Haussler and Manfred Opper* - 1995 |

| **Mutual information gaining algorithm and its relation to PAC-learning algorithm** - *Eiji Takimoto, Ichiro Tajika and Akira Maruoka* - 1994 |

| **Mutual Information in Learning Feature Transformations** - *Kari Torkkola and William M. Campbell* - 2000 |