1984 | |  | A General Selection Criterion for Inductive Inference - M. P. Georgeff and C. S. Wallace |
| |  | Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien. - G. Schäfer-Richter |
| |  | Mixture densities, maximum likelihood, and the EM algorithm - R. A. Redner and H. F. Walker |
| |  | Learning Theory and Natural Language - D. N. Osherson, M. Stob and S. Weinstein |
| |  | Inference of skeletal automata - L. Fass |
| |  | Connections between Identifying Functionals, Standardizing Operations, and Computable Numberings - R. Freivalds, E. B. Kinber and R. Wiehagen |
| |  | Editing by example - R. Nix |
| |  | Polynomial-time inference of general pattern languages - K. P. Jantke |
| |  | Models of Language Acquisition - D. Osherson and S. Weinstein |
| |  | Consistent Inference of Probabilities for Reproducible Experiments - Y. Tikochinsky, N. Z. Tishby and R. D. Levine |
| |  | On the Nonboundability of total effective operators - T. Zeugmann |
| |  | Deductive learning - L. Valiant |
| |  | On the Power of Probabilistic Strategies in Inductive Inference - R. Wiehagen, R. Freivalds and E. B. Kinber |
| |  | Jeffrey's Rule and the Problem of Autonomous Inference Agents - J. Pearl |
| |  | A note on the Pattern-finding Problem - C. Hua and K. Ko |
| |  | Classification and Regression Trees - L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone |
| |  | Linear and Nonlinear Programming - D. G. Luenberger |
| |  | Convergence of Stochastic Processes - D. Pollard |
| May |  | Boltzmann Machines: Constraint Satisfaction Networks that Learn - G. E. Hinton, T. J. Sejnowski and D. H. Ackley |
| August |  | Learning About Systems That Contain State Variables - T. G. Dietterich |
| |  | Towards Chunking as a General Learning Mechanism - J. Laird, P. Rosenbloom and A. Newell |
| November |  | A Theory of the Learnable - L. G. Valiant |
| December |  | Learning of Expert Systems from Data - P. C. Cheeseman |