page 1  (13 pages)
2to next section

Freund, J. E. (1962). Mathematical statistics. Englewood Cliffs, NJ.: Prentice-Hall.

Goldberg, D., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal function optimization. In Proceedings of the Second International Conference on Genetic Algorithms, 148{154, San Mateo, CA. Morgan Kaufmann.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison Wesley.

Goldberg, D. E., Deb, K., & Horn, J. (1992). Massive multimodality, deception, and genetic algorithms (IlliGAL Technical Report No. 92005). Urbana, Illinois: University of Illinois at Urbana-Champaign.

Goldberg, D. E., & Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms. In Proceedings of the Second International Conference on Genetic Algorithms, 1{8, Pittsburgh, PA. Lawrence Erlbaum.

Hines, W. W., & Montgomery, D. C. (1980). Probability and statistics in engineering and management science (2nd ed.). New York: Wiley.

Holland, J., Holyoak, K., Nisbett, R., & Thagard, P. (1986). Induction: Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: The University of Michigan Press.

Kargupta, H., & Smith, R. E. (1991). System identification with evolving polynomial networks. In Proceedings of the Forth International Conference on Genetic Algorithms, 370{376, San Mateo, CA. Morgan-Kaufmann.

Perelson, A. S. (1989). Immune network theory. Immunol. Rev., 110, 5{36.

Smith, R. E. (1991). Default hierarchy formation and memory exploitation in learning classifier systems (TCGA Report No. 91003). Tuscaloosa: University of Alabama. (Ph.D dissertation).

Smith, R. E., Forrest, S., & Perelson, A. S. (1992). Searching for diverse, cooperative populations with genetic algorithms (TCGA Report No. 92002). Tuscaloosa: University of Alabama.

Wilson, S. W. (1987). Classifier systems and the animat problem. Machine Learning, 2, 199{228.